Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38135291

RESUMEN

Studying the genetic and molecular characteristics of brewing yeast strains is crucial for understanding their domestication history and adaptations accumulated over time in fermentation environments, and for guiding optimizations to the brewing process itself. Saccharomyces cerevisiae (brewing yeast) is among the most profiled organisms on the planet, yet the temporal molecular changes that underlie industrial fermentation and beer brewing remain understudied. Here, we characterized the genomic makeup of a Saccharomyces cerevisiae ale yeast widely used in the production of Hefeweizen beers, and applied shotgun mass spectrometry to systematically measure the proteomic changes throughout 2 fermentation cycles which were separated by 14 rounds of serial repitching. The resulting brewing yeast proteomics resource includes 64,740 protein abundance measurements. We found that this strain possesses typical genetic characteristics of Saccharomyces cerevisiae ale strains and displayed progressive shifts in molecular processes during fermentation based on protein abundance changes. We observed protein abundance differences between early fermentation batches compared to those separated by 14 rounds of serial repitching. The observed abundance differences occurred mainly in proteins involved in the metabolism of ergosterol and isobutyraldehyde. Our systematic profiling serves as a starting point for deeper characterization of how the yeast proteome changes during commercial fermentations and additionally serves as a resource to guide fermentation protocols, strain handling, and engineering practices in commercial brewing and fermentation environments. Finally, we created a web interface (https://brewing-yeast-proteomics.ccbb.utexas.edu/) to serve as a valuable resource for yeast geneticists, brewers, and biochemists to provide insights into the global trends underlying commercial beer production.


Asunto(s)
Proteómica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Cerveza/análisis
2.
bioRxiv ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873463

RESUMEN

The fidelity of signal transduction requires the binding of regulatory molecules to their cognate targets. However, the crowded cell interior risks off-target interactions between proteins that are functionally unrelated. How such off-target interactions impact fitness is not generally known, but quantifying this is required to understand the constraints faced by cell systems as they evolve. Here, we use the model organism S. cerevisiae to inducibly express tyrosine kinases. Because yeast lacks bona fide tyrosine kinases, most of the resulting tyrosine phosphorylation is spurious. This provides a suitable system to measure the impact of artificial protein interactions on fitness. We engineered 44 yeast strains each expressing a tyrosine kinase, and quantitatively analysed their phosphoproteomes. This analysis resulted in ~30,000 phosphosites mapping to ~3,500 proteins. Examination of the fitness costs in each strain revealed a strong correlation between the number of spurious pY sites and decreased growth. Moreover, the analysis of pY effects on protein structure and on protein function revealed over 1000 pY events that we predict to be deleterious. However, we also find that a large number of the spurious pY sites have a negligible effect on fitness, possibly because of their low stoichiometry. This result is consistent with our evolutionary analyses demonstrating a lack of phosphotyrosine counter-selection in species with bona fide tyrosine kinases. Taken together, our results suggest that, alongside the risk for toxicity, the cell can tolerate a large degree of non-functional crosstalk as interaction networks evolve.

3.
Nat Struct Mol Biol ; 30(11): 1761-1773, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37845410

RESUMEN

The cellular ability to react to environmental fluctuations depends on signaling networks that are controlled by the dynamic activities of kinases and phosphatases. Here, to gain insight into these stress-responsive phosphorylation networks, we generated a quantitative mass spectrometry-based atlas of early phosphoproteomic responses in Saccharomyces cerevisiae exposed to 101 environmental and chemical perturbations. We report phosphosites on 59% of the yeast proteome, with 18% of the proteome harboring a phosphosite that is regulated within 5 min of stress exposure. We identify shared and perturbation-specific stress response programs, uncover loss of phosphorylation as an integral early event, and dissect the interconnected regulatory landscape of kinase-substrate networks, as we exemplify with target of rapamycin signaling. We further reveal functional organization principles of the stress-responsive phosphoproteome based on phosphorylation site motifs, kinase activities, subcellular localizations, shared functions and pathway intersections. This information-rich map of 25,000 regulated phosphosites advances our understanding of signaling networks.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteoma/metabolismo , Fosforilación , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Fosfoproteínas/metabolismo
4.
bioRxiv ; 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37790497

RESUMEN

Studying the genetic and molecular characteristics of brewing yeast strains is crucial for understanding their domestication history and adaptations accumulated over time in fermentation environments, and for guiding optimizations to the brewing process itself. Saccharomyces cerevisiae (brewing yeast) is amongst the most profiled organisms on the planet, yet the temporal molecular changes that underlie industrial fermentation and beer brewing remain understudied. Here, we characterized the genomic makeup of a Saccharomyces cerevisiae ale yeast widely used in the production of Hefeweizen beers, and applied shotgun mass spectrometry to systematically measure the proteomic changes throughout two fermentation cycles which were separated by 14 rounds of serial repitching. The resulting brewing yeast proteomics resource includes 64,740 protein abundance measurements. We found that this strain possesses typical genetic characteristics of Saccharomyces cerevisiae ale strains and displayed progressive shifts in molecular processes during fermentation based on protein abundance changes. We observed protein abundance differences between early fermentation batches compared to those separated by 14 rounds of serial repitching. The observed abundance differences occurred mainly in proteins involved in the metabolism of ergosterol and isobutyraldehyde. Our systematic profiling serves as a starting point for deeper characterization of how the yeast proteome changes during commercial fermentations and additionally serves as a resource to guide fermentation protocols, strain handling, and engineering practices in commercial brewing and fermentation environments. Finally, we created a web interface (https://brewing-yeast-proteomics.ccbb.utexas.edu/) to serve as a valuable resource for yeast geneticists, brewers, and biochemists to provide insights into the global trends underlying commercial beer production.

5.
J Proteome Res ; 22(6): 1868-1880, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37097255

RESUMEN

Phosphotyrosine (pY) enrichment is critical for expanding the fundamental and clinical understanding of cellular signaling by mass spectrometry-based proteomics. However, current pY enrichment methods exhibit a high cost per sample and limited reproducibility due to expensive affinity reagents and manual processing. We present rapid-robotic phosphotyrosine proteomics (R2-pY), which uses a magnetic particle processor and pY superbinders or antibodies. R2-pY can handle up to 96 samples in parallel, requires 2 days to go from cell lysate to mass spectrometry injections, and results in global proteomic, phosphoproteomic, and tyrosine-specific phosphoproteomic samples. We benchmark the method on HeLa cells stimulated with pervanadate and serum and report over 4000 unique pY sites from 1 mg of peptide input, strong reproducibility between replicates, and phosphopeptide enrichment efficiencies above 99%. R2-pY extends our previously reported R2-P2 proteomic and global phosphoproteomic sample preparation framework, opening the door to large-scale studies of pY signaling in concert with global proteome and phosphoproteome profiling.


Asunto(s)
Péptidos , Proteómica , Humanos , Fosfotirosina/metabolismo , Células HeLa , Proteómica/métodos , Reproducibilidad de los Resultados , Péptidos/química , Fosforilación , Fosfopéptidos/análisis , Proteoma/análisis
6.
bioRxiv ; 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36711935

RESUMEN

Phosphotyrosine (pY) enrichment is critical for expanding fundamental and clinical understanding of cellular signaling by mass spectrometry-based proteomics. However, current pY enrichment methods exhibit a high cost per sample and limited reproducibility due to expensive affinity reagents and manual processing. We present rapid-robotic phosphotyrosine proteomics (R2-pY), which uses a magnetic particle processor and pY superbinders or antibodies. R2-pY handles 96 samples in parallel, requires 2 days to go from cell lysate to mass spectrometry injections, and results in global proteomic, phosphoproteomic and tyrosine specific phosphoproteomic samples. We benchmark the method on HeLa cells stimulated with pervanadate and serum and report over 4000 unique pY sites from 1 mg of peptide input, strong reproducibility between replicates, and phosphopeptide enrichment efficiencies above 99%. R2-pY extends our previously reported R2-P2 proteomic and global phosphoproteomic sample preparation framework, opening the door to large-scale studies of pY signaling in concert with global proteome and phosphoproteome profiling.

7.
Front Immunol ; 12: 703719, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504490

RESUMEN

Mouse T cells express the ecto-ADP-ribosyltransferase ARTC2.2, which can transfer the ADP-ribose group of extracellular nicotinamide adenine dinucleotide (NAD+) to arginine residues of various cell surface proteins thereby influencing their function. Several targets of ARTC2.2, such as P2X7, CD8a and CD25 have been identified, however a comprehensive mouse T cell surface ADP-ribosylome analysis is currently missing. Using the Af1521 macrodomain-based enrichment of ADP-ribosylated peptides and mass spectrometry, we identified 93 ADP-ribsoylated peptides corresponding to 67 distinct T cell proteins, including known targets such as CD8a and CD25 but also previously unknown targets such as CD73. We evaluated the impact of ADP-ribosylation on the capability of CD73 to generate adenosine from adenosine monophosphate. Our results show that extracellular NAD+ reduces the enzymatic activity of CD73 HEK cells co-transfected with CD73/ARTC2.2. Importantly, NAD+ significantly reduced CD73 activity on WT CD8 T cells compared to ARTC2ko CD8 T cells or WT CD8 T cells treated with an ARTC2.2-blocking nanobody. Our study provides a comprehensive list of T cell membrane proteins that serve as targets for ADP-ribosylation by ARTC2.2 and whose function may be therefore affected by ADP-ribosylation.


Asunto(s)
5'-Nucleotidasa/inmunología , ADP Ribosa Transferasas/inmunología , ADP-Ribosilación/inmunología , Linfocitos T CD8-positivos/inmunología , 5'-Nucleotidasa/genética , ADP Ribosa Transferasas/genética , ADP-Ribosilación/genética , Animales , Ratones , Ratones Noqueados
8.
Mol Cell Proteomics ; 20: 100129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34339852

RESUMEN

Post-translational modification (PTM) of proteins allows cells to regulate protein functions, transduce signals and respond to perturbations. PTMs expand protein functionality and diversity, which leads to increased proteome complexity. PTM crosstalk describes the combinatorial action of multiple PTMs on the same or on different proteins for higher order regulation. Here we review how recent advances in proteomic technologies, mass spectrometry instrumentation, and bioinformatics spurred the proteome-wide identification of PTM crosstalk through measurements of PTM sites. We provide an overview of the basic modes of PTM crosstalk, the proteomic methods to elucidate PTM crosstalk, and approaches that can inform about the functional consequences of PTM crosstalk.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteómica , Humanos
9.
J Am Soc Mass Spectrom ; 32(1): 157-168, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33140951

RESUMEN

ADP-ribosylation is a reversible post-translational modification of proteins that has been linked to many biological processes. The identification of ADP-ribosylated proteins and particularly of their acceptor amino acids remains a major challenge. The attachment sites of the modification are difficult to localize by mass spectrometry (MS) because of the labile nature of the linkage and the complex fragmentation pattern of the ADP-ribose in MS/MS experiments. In this study we performed a comprehensive analysis of higher-energy collisional dissociation (HCD) spectra acquired from ADP-ribosylated peptides which were modified on arginine, serine, glutamic acid, aspartic acid, tyrosine, or lysine residues. In addition to the fragmentation of the peptide backbone, various cleavages of the ADP-ribosylated amino acid side chains were investigated. We focused on gas-phase fragmentations that were specific either to ADP-ribosylated arginine or to ADP-ribosylated serine and other O-linked ADP-ribosylations. The O-glycosidic linkage between ADP-ribose and serine, glutamic acid, or aspartic acid was the major cleavage site, making localization of these modification sites difficult. In contrast, the bond between ADP-ribose and arginine was relatively stable. The main cleavage site was the inner bond of the guanidine group, which resulted in the formation of ADP-ribosylated carbodiimide and of ornithine in place of modified arginine. Taking peptide fragment ions resulting from this specific cleavage into account, a considerably larger number of peptides containing ADP-ribosylated arginine were identified in database searches. Furthermore, the presence of diagnostic ions and of losses of fragments from peptide ions allowed us, in most cases, to distinguish between ADP-ribosylated arginine and serine residues.


Asunto(s)
Arginina/química , Espectrometría de Masas/métodos , Péptidos/química , ADP-Ribosilación , Adenosina Difosfato Ribosa/química , Adenosina Difosfato Ribosa/metabolismo , Arginina/metabolismo , Bases de Datos de Proteínas , Gases , Guanidina/química , Procesamiento Proteico-Postraduccional , Serina/química , Serina/metabolismo
10.
Mol Syst Biol ; 15(12): e9021, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31885202

RESUMEN

Recent developments in proteomics have enabled signaling studies where > 10,000 phosphosites can be routinely identified and quantified. Yet, current analyses are limited in throughput, reproducibility, and robustness, hampering experiments that involve multiple perturbations, such as those needed to map kinase-substrate relationships, capture pathway crosstalks, and network inference analysis. To address these challenges, we introduce rapid-robotic phosphoproteomics (R2-P2), an end-to-end automated method that uses magnetic particles to process protein extracts to deliver mass spectrometry-ready phosphopeptides. R2-P2 is rapid, robust, versatile, and high-throughput. To showcase the method, we applied it, in combination with data-independent acquisition mass spectrometry, to study signaling dynamics in the mitogen-activated protein kinase (MAPK) pathway in yeast. Our results reveal broad and specific signaling events along the mating, the high-osmolarity glycerol, and the invasive growth branches of the MAPK pathway, with robust phosphorylation of downstream regulatory proteins and transcription factors. Our method facilitates large-scale signaling studies involving hundreds of perturbations opening the door to systems-level studies aiming to capture signaling complexity.


Asunto(s)
Fosfoproteínas/análisis , Proteómica/métodos , Levaduras/metabolismo , Proteínas Fúngicas/metabolismo , Ensayos Analíticos de Alto Rendimiento , Sistema de Señalización de MAP Quinasas , Fenómenos Magnéticos , Espectrometría de Masas , Reproducibilidad de los Resultados , Robótica
11.
Cell Rep ; 24(7): 1916-1929.e5, 2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30110646

RESUMEN

The clostridium-like ecto-ADP-ribosyltransferase ARTC1 is expressed in a highly restricted manner in skeletal muscle and heart tissue. Although ARTC1 is well studied, the identification of ARTC1 targets in vivo and subsequent characterization of ARTC1-regulated cellular processes on the proteome level have been challenging and only a few ARTC1-ADP-ribosylated targets are known. Applying our recently developed mass spectrometry-based workflow to C2C12 myotubes and to skeletal muscle and heart tissues from wild-type mice, we identify hundreds of ARTC1-ADP-ribosylated proteins whose modifications are absent in the ADP-ribosylome of ARTC1-deficient mice. These proteins are ADP-ribosylated on arginine residues and mainly located on the cell surface or in the extracellular space. They are associated with signal transduction, transmembrane transport, and muscle function. Validation of hemopexin (HPX) as a ARTC1-target protein confirmed the functional importance of ARTC1-mediated extracellular arginine ADP-ribosylation at the systems level.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Hemopexina/metabolismo , Proteínas Musculares/genética , Debilidad Muscular/genética , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Procesamiento Proteico-Postraduccional , ADP Ribosa Transferasas/química , ADP Ribosa Transferasas/genética , ADP-Ribosilación , Animales , Arginina/metabolismo , Proteínas Portadoras/clasificación , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Ontología de Genes , Hemo/química , Hemo/metabolismo , Hemopexina/química , Hemopexina/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Anotación de Secuencia Molecular , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Proteínas Musculares/clasificación , Proteínas Musculares/metabolismo , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Músculo Esquelético/patología , Miocardio/patología , Unión Proteica , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Transducción de Señal
12.
EMBO Rep ; 19(8)2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29954836

RESUMEN

Despite recent mass spectrometry (MS)-based breakthroughs, comprehensive ADP-ribose (ADPr)-acceptor amino acid identification and ADPr-site localization remain challenging. Here, we report the establishment of an unbiased, multistep ADP-ribosylome data analysis workflow that led to the identification of tyrosine as a novel ARTD1/PARP1-dependent in vivo ADPr-acceptor amino acid. MS analyses of in vitro ADP-ribosylated proteins confirmed tyrosine as an ADPr-acceptor amino acid in RPS3A (Y155) and HPF1 (Y238) and demonstrated that trans-modification of RPS3A is dependent on HPF1. We provide an ADPr-site Localization Spectra Database (ADPr-LSD), which contains 288 high-quality ADPr-modified peptide spectra, to serve as ADPr spectral references for correct ADPr-site localizations.


Asunto(s)
ADP-Ribosilación , Adenosina Difosfato Ribosa/metabolismo , Tirosina/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Daño del ADN , Células HeLa , Humanos , Espectrometría de Masas , Proteínas Nucleares/metabolismo , Péptidos/química , Péptidos/metabolismo , Fosfoproteínas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteoma/metabolismo , ARN Interferente Pequeño/metabolismo , Reproducibilidad de los Resultados
13.
Nat Commun ; 8(1): 2055, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29234005

RESUMEN

ADP-ribosylation is a posttranslational modification that exists in monomeric and polymeric forms. Whereas the writers (e.g. ARTD1/PARP1) and erasers (e.g. PARG, ARH3) of poly-ADP-ribosylation (PARylation) are relatively well described, the enzymes involved in mono-ADP-ribosylation (MARylation) have been less well investigated. While erasers for the MARylation of glutamate/aspartate and arginine have been identified, the respective enzymes with specificity for serine were missing. Here we report that, in vitro, ARH3 specifically binds and demodifies proteins and peptides that are MARylated. Molecular modeling and site-directed mutagenesis of ARH3 revealed that numerous residues are critical for both the mono- and the poly-ADP-ribosylhydrolase activity of ARH3. Notably, a mass spectrometric approach showed that ARH3-deficient mouse embryonic fibroblasts are characterized by a specific increase in serine-ADP-ribosylation in vivo under untreated conditions as well as following hydrogen peroxide stress. Together, our results establish ARH3 as a serine mono-ADP-ribosylhydrolase and as an important regulator of the basal and stress-induced ADP-ribosylome.


Asunto(s)
ADP-Ribosilación/fisiología , Glicósido Hidrolasas/fisiología , Poli(ADP-Ribosa) Polimerasa-1/fisiología , Serina/metabolismo , ADP-Ribosilación/efectos de los fármacos , Animales , Línea Celular Tumoral , Pruebas de Enzimas , Técnicas de Inactivación de Genes , Glicósido Hidrolasas/química , Humanos , Peróxido de Hidrógeno/farmacología , Espectrometría de Masas , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteómica/métodos
14.
Sci Rep ; 7(1): 16477, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29184112

RESUMEN

Mammalian ecto-ADP-ribosyltransferases (ecto-ARTs or also ARTCs) catalyze the ADP-ribosylation of cell surface proteins using extracellular nicotinamide adenine dinucleotide (NAD+) as substrate. By this post-translational protein modification, ecto-ARTs modulate the function of various target proteins. A functional role of ARTC2 has been demonstrated for peripheral immune cells such as T cells and macrophages. Yet, little is known about the role of ecto-ARTs in the central nervous system and on microglia. Here, we identified ARTC2.1 as the major ecto-ART expressed on murine microglia. ARTC2.1 expression was strongly upregulated on microglia upon co-stimulation with LPS and an ERK1/2 inhibitor or upon IFNß stimulation. We identified several target proteins modified by ARTC2.1 on microglia with a recently developed mass spectrometry approach, including two receptors for immunoglobulin G (IgG), FcγR1 and FcγR2B. Both proteins were verified as targets of ARTC2.1 in vitro using a radiolabeling assay with 32P-NAD+ as substrate. Moreover, ADP-ribosylation of both targets strongly inhibited their capacity to bind IgG. In concordance, ARTC2.1 induction in WT microglia and subsequent cell surface ADP-ribosylation significantly reduced the phagocytosis of IgG-coated latex beads, which was unimpaired in NAD+/DTT treated microglia from ARTC2.1-/- mice. Hence, induction of ARTC2.1 expression under inflammatory conditions, and subsequent ADP-ribosylation of cell surface target proteins could represent a hitherto unnoticed mechanism to regulate the immune response of murine microglia.


Asunto(s)
ADP Ribosa Transferasas/metabolismo , Microglía/metabolismo , Receptores de IgG/metabolismo , ADP Ribosa Transferasas/genética , Animales , Proteínas Portadoras , Membrana Celular/metabolismo , Células Cultivadas , Activación Enzimática , Expresión Génica , Interferón beta/metabolismo , Lipopolisacáridos/inmunología , Ratones , Microglía/inmunología , Fagocitosis/inmunología , Unión Proteica , Mapeo de Interacción de Proteínas
15.
Methods Mol Biol ; 1608: 137-148, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28695508

RESUMEN

Protein ADP-ribosylation is a covalent, reversible posttranslational modification (PTM) catalyzed by ADP-ribosyltransferases (ARTs). Proteins can be either mono- or poly-ADP-ribosylated under a variety of physiological and pathological conditions. To understand the functional contribution of protein ADP-ribosylation to normal and disease/stress states, modified protein and corresponding ADP-ribose acceptor site identification is crucial. Since ADP-ribosylation is a transient and relatively low abundant PTM, systematic and accurate identification of ADP-ribose acceptor sites has only recently become feasible. This is due to the development of specific ADP-ribosylated protein/peptide enrichment methodologies, as well as technical advances in high-accuracy liquid chromatography-tandem mass spectrometry (LC-MS/MS). The standardized protocol described here allows the identification of ADP-ribose acceptor sites in in vitro ADP-ribosylated proteins and will, thus, contribute to the functional characterization of this important PTM.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Cromatografía Liquida/métodos , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Espectrometría de Masas en Tándem/métodos , ADP-Ribosilación/genética , ADP-Ribosilación/fisiología , Animales , Humanos , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología
16.
Methods Mol Biol ; 1608: 149-162, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28695509

RESUMEN

ADP-ribosylation is a posttranslational modification (PTM) that affects a variety of cellular processes. In recent years, mass spectrometry (MS)-based proteomics has become a valuable tool for studying ADP-ribosylation. However, studying this PTM in vivo in an unbiased and sensitive manner has remained a difficult challenge. Here, we describe a detailed protocol for unbiased analysis of ADP-ribosylated proteins and their ADP-ribose acceptor sites under physiological conditions. The method relies on the enrichment of mono-ADP-ribosylated peptides using the macrodomain Af1521 in combination with liquid chromatography-high-resolution tandem MS (LC-MS/MS). The 5-day protocol explains the step-by-step enrichment and identification of ADP-ribosylated peptides from cell culture stage all the way through to data processing using the MaxQuant software suite.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Animales , Humanos , Procesamiento Proteico-Postraduccional/genética , Procesamiento Proteico-Postraduccional/fisiología , Proteoma/metabolismo , Proteómica/métodos , Programas Informáticos
17.
Anal Chem ; 89(3): 1523-1530, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28035797

RESUMEN

Protein adenosine diphosphate (ADP)-ribosylation is a physiologically and pathologically important post-translational modification. Recent technological advances have improved analysis of this complex modification and have led to the discovery of hundreds of ADP-ribosylated proteins in both cultured cells and mouse tissues. Nevertheless, accurate assignment of the ADP-ribose acceptor site(s) within the modified proteins identified has remained a challenging task. This is mainly due to poor fragmentation of modified peptides. Here, using an Orbitrap Fusion Tribrid mass spectrometer, we present an optimized methodology that not only drastically improves the overall localization scores for ADP-ribosylation acceptor sites but also boosts ADP-ribosylated peptide identifications. First, we systematically compared the efficacy of higher-energy collision dissociation (HCD), electron-transfer dissociation with supplemental collisional activation (ETcaD), and electron-transfer/higher-energy collision dissociation (EThcD) fragmentation methods when determining ADP-ribose acceptor sites within complex cellular samples. We then tested the combination of HCD and EThcD fragmentation, which were employed in a product-dependent manner, and the unique fragmentation properties of the ADP-ribose moiety were used to trigger targeted fragmentation of only the modified peptides. The best results were obtained with a workflow that included initial fast, high-energy HCD (Orbitrap, FT) scans, which produced intense ADP-ribose fragmentation ions. These potentially ADP-ribosylated precursors were then selected and analyzed via subsequent high-resolution HCD and EThcD fragmentation. Using these resulting high-quality spectra, we identified a xxxxxxKSxxxxx modification motif where lysine can serve as an ADP-ribose acceptor site. Due to the appearance of serine within this motif and its close presence to the lysine, further analysis revealed that serine serves as a new ADP-ribose acceptor site across the proteome.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Péptidos/análisis , Proteínas/metabolismo , Espectrometría de Masas en Tándem , Adenosina Difosfato Ribosa/química , Cromatografía Líquida de Alta Presión , Transporte de Electrón , Células HeLa , Humanos , Procesamiento Proteico-Postraduccional
18.
Nat Commun ; 7: 12917, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27686526

RESUMEN

Although protein ADP-ribosylation is involved in diverse biological processes, it has remained a challenge to identify ADP-ribose acceptor sites. Here, we present an experimental workflow for sensitive and unbiased analysis of endogenous ADP-ribosylation sites, capable of detecting more than 900 modification sites in mammalian cells and mouse liver. In cells, we demonstrate that Lys residues, besides Glu, Asp and Arg residues, are the dominant in vivo targets of ADP-ribosylation during oxidative stress. In normal liver tissue, we find Arg residues to be the predominant modification site. The cellular distribution and biological processes that involve ADP-ribosylated proteins are different in cultured cells and liver tissue, in the latter of which the majority of sites were found to be in cytosolic and mitochondrial protein networks primarily associated with metabolism. Collectively, we describe a robust methodology for the assessment of the role of ADP-ribosylation and ADP-ribosyltransferases in physiological and pathological states.

19.
Mol Cell ; 63(2): 181-183, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27447982

RESUMEN

In a recent issue of Science, Gibson et al. (2016) describe an in vitro chemical genetic approach that maps the specific ADP-ribosylation sites targeted by the ADP-ribosyltransferases PARP-1, PARP-2, and PARP-3 and demonstrate that PARP-1 regulates RNA polymerase II promoter-proximal pausing.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Adenosina Difosfato , Glicosilación , ARN Polimerasa II
20.
Mol Cell ; 61(3): 474-485, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26833088

RESUMEN

Chromatin ADP-ribosylation regulates important cellular processes. However, the exact location and magnitude of chromatin ADP-ribosylation are largely unknown. A robust and versatile method for assessing chromatin ADP-ribosylation is therefore crucial for further understanding its function. Here, we present a chromatin affinity precipitation method based on the high specificity and avidity of two well-characterized ADP-ribose binding domains to map chromatin ADP-ribosylation at the genome-wide scale and at specific loci. Our ADPr-ChAP method revealed that in cells exposed to oxidative stress, ADP-ribosylation of chromatin scales with histone density, with highest levels at heterochromatic sites and depletion at active promoters. Furthermore, in growth factor-induced adipocyte differentiation, increased chromatin ADP-ribosylation was observed at PPARγ target genes, whose expression is ADP-ribosylation dependent. In combination with deep-sequencing and conventional chromatin immunoprecipitation, the established ADPr-ChAP provides a valuable resource for the bioinformatic comparison of ADP-ribosylation with other chromatin modifications and for addressing its role in other biologically important processes.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Adipocitos/metabolismo , Núcleo Celular/metabolismo , Inmunoprecipitación de Cromatina/métodos , Cromatina/metabolismo , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipogénesis , Animales , Sitios de Unión , Línea Celular Tumoral , Núcleo Celular/efectos de los fármacos , Cromatina/genética , Biología Computacional , Regulación de la Expresión Génica , Hormona del Crecimiento/farmacología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Peróxido de Hidrógeno/farmacología , Ratones , Estrés Oxidativo , PPAR gamma/genética , PPAR gamma/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Estructura Terciaria de Proteína , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA